Journal cover Journal topic
Proceedings of the International Association of Hydrological Sciences An open-access publication for refereed proceedings in hydrology

Journal metrics

  • SNIP value: 0.058 SNIP 0.058
  • SJR value: 0.135 SJR 0.135
  • IPP value: 0.096 IPP 0.096
Proc. IAHS, 377, 83-89, 2018
https://doi.org/10.5194/piahs-377-83-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
 
16 Apr 2018
Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa)
Abderraouf Hzami1, Oula Amrouni2, Gheorghe Romanescu3, Cristian Constantin Stoleriu3, Alin Mihu-Pintilie4, and Abdeljaouad Saâdi1 1University of Tunis El-Manar, Faculty of Science, Laboratory of Mineral Resource and Environment, Tunis, Tunisia
2Laboratory of Marine Environment, National Institute of Marine Science and Technology, Tunis, Tunisia
3University Alexandru Ioan Cuza Iasi, Faculty of Geography and Geology, Department of Geography, Iasi, Romania
4University Alexandru Ioan Cuza Iasi, Interdisciplinary Research Department – Field Science, Iasi, Romania
Abstract. The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were used for mapping the evolution of shoreline. Diachronic data (satellite imagery, aerial photography and topographic maps) were used to monitor and to quantify, the evolution of the coastal areas. These thematic data were digitally overlaid and vectorised for highlighting the shoreline changes between 1936 and 2016, in order to map the rate of erosion and accretion along the shoreline. Results show that the accretion and degradation are related to the Medjerda: change of outlet in 1973 and impoundment of the Sidi Salem dam in 1982. We found that the general trend of the coastal geomorphic processes can be monitored with satellite imageries (such as Sentinel A2, Spots 4 and 5), due to its repetitive coverage along the time and their high quality concerning the spectral contrast between land and sea areas. Improved satellite imageries with high resolution should be a valuable tool for complementing traditional methods for mapping and assessing the sedimentary structures (such as shoreline, delta, marine bars), and monitoring especially the lowlands coastal areas (slightly eroded).
Citation: Hzami, A., Amrouni, O., Romanescu, G., Constantin Stoleriu, C., Mihu-Pintilie, A., and Saâdi, A.: Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa), Proc. IAHS, 377, 83-89, https://doi.org/10.5194/piahs-377-83-2018, 2018.
Publications Copernicus
Download
Short summary
The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were 15 used for mapping the evolution of shoreline. Diachronic data.
The aim of this study consists in testing the effectiveness of satellite data in order to...
Share