Journal metrics

Journal metrics

  • CiteScore value: indexed CiteScore indexed
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
Proc. IAHS, 379, 231-241, 2018
https://doi.org/10.5194/piahs-379-231-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Pre-conference publication
05 Jun 2018
Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model
Pan Wu, Xu-Sheng Wang, and Sihai Liang School of Water Resources and Environment, China University of Geosciences, Beijing, China
Abstract. Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011–2030 (2020s), 2046–2065 (2050s), 2080–2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.
Citation: Wu, P., Wang, X.-S., and Liang, S.: Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model, Proc. IAHS, 379, 231-241, https://doi.org/10.5194/piahs-379-231-2018, 2018.
Publications Copernicus
Download
Short summary
Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale.
Though extensive researches were conducted in the source region of the Yellow River (SRYR) to...
Share