Journal metrics

Journal metrics

  • CiteScore value: indexed CiteScore
    indexed
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
Volume 379
Proc. IAHS, 379, 67-72, 2018
https://doi.org/10.5194/piahs-379-67-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Proc. IAHS, 379, 67-72, 2018
https://doi.org/10.5194/piahs-379-67-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Pre-conference publication 05 Jun 2018

Pre-conference publication | 05 Jun 2018

Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India

Sikhululekile Ncube, Lindsay Beevers, Adebayo J. Adeloye, and Annie Visser Sikhululekile Ncube et al.
  • Institute for Infrastructure and Environment, School of Energy, GeoScience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Abstract. River systems provide a diverse range of ecosystem services, examples include: flood regulation (regulating), fish (provisioning), nutrient cycling (supporting) and recreation (cultural). Developing water resources through the construction of dams (hydropower or irrigation) can enhance the delivery of provisioning ecosystem services. However, these hydrologic alterations result in reductions in less tangible regulating, cultural and supporting ecosystem services. This study seeks to understand how multiple impoundments, abstractions and transfers within the upper Beas River Basin, Western Himalayas, India, are affecting the delivery of supporting ecosystem services. Whilst approaches for assessing supporting ecosystem services are under development, the immediate aim of this paper is to set out a framework for their quantification, using the macroinvertebrate index Lotic-Invertebrate Index for Flow Evaluation (LIFE). LIFE is a weighted measure of the flow velocity preferences of the macroinvertebrate community. Flow records from multiple gauging stations within the basin were used to investigate flow variability at seasonal, inter-annual and decadal time scales. The findings show that both mean monthly and seasonal cumulative flows have decreased over time in the Beas River Basin. A positive hydroecological relationship between LIFE and flow was also identified, indicative of macroinvertebrate response to seasonal changes in the flow regime. For example, high LIFE scores (7.7–9.3) in the winter and summer seasons indicate an abundance of macroinvertebrates with a preference for high flows; this represents a high potential for instream supporting ecosystem services delivery. However, further analysis is required to understand these hydroecological interactions in the study basin and the impact on instream supporting ecosystem services delivery.

Publications Copernicus
Download
Short summary
The aim of this study is to understand the impact of flow regulation on supporting ecosystem services in the Beas Basin in India, using macroinvertebrates as an indicator. Findings show that both river flows and macroinvertebrate abundance have decreased overtime in the Beas Basin. Consequently, this could have a detrimental impact on instream supporting ecosystem services delivery. Such an understanding is important in future water resources management in the Beas River Basin.
The aim of this study is to understand the impact of flow regulation on supporting ecosystem...
Citation
Share